
AD-AI94 599 FAULT-TOLERANT SIGNAL PROCESSING ACHITECTURES WI1TH /
DISTRIBUTED ERROR CONTROL(U) CALIFORNIA UNIV DAVIS DEPT

UNCLSSIIED OF ELECTRICAL AND COMPUTER ENGINEERING G R REDINSO

1LL -

5..

1111 I.01.4 __1_J

O11C FILE fl)

FINAL REPORT

FAULT-TOLERANT SIGNAL PROCESSING ARCHITECTURES
WITH DISTRIBUTED ERROR CONTROL

0) Supported by:

THE SDIO INNOVATIVE SCIENCE AND TECHNOLOGY OFFICE
GRANT through
GRANT N00014-86-K-0518

__ OFFICE OF NAVAL RESEARCH
DETACHMENT, PASADENA
1030 EAST GREEN STREET

PASADENA, CA 91106

Principal Investigator:

Professor G. Robert Redinbo
Department of Electrical Engineering D TI

and Computer Science
University of California E L E' .'

Davis, CA 95616 MAY 2 5 1988
(916) 752-3087

ABSTRACT

Digital filtering architectures that simultaneously offer advantages for VLSI fabrication and

contain distributed error-control are presented. Such structures require parallelism as well as

inherent error-control capabilities because VLSI implementations are susceptible to temporary and

intermittent hardware errors. Three different approaches have been developed to meet these

requirements. The first method uses arithmetic decomposition to obtain highly parallel sections

each operating with finite field arithmetic while the other two approaches concern finite and infinite

". convolutions over real or complex number arithmetic domains.

Straightforward realizations depending on highly parallel algebraic decompositions were

studied first. They involve the interconnection of fault-tolerant subsystems employing finite field

arithmetic into which powerful cyclic error-correcting codes are imbedded naturally. The locations

for fault-tolerance and the role of cyclic codes are detailed. Alternative realizations employing finite

field transform domains and new techniques for protecting the transform coefficients are

4iro'rwi frr pu.blic rslea,
LX.:L'l'u l.. ... r

_ | .*;:'.r' ,,:, '--i' ',b",J - *3V V J

0

developed. These coefficients' special property, called the chord property, permits error detection

and correction in the transform domain, and the proper selection of certain code parameters can

enhance this capability. Fast transform algorithms with distributed error-control are possible

because the interstage variables obey limited chord properties.

Fault-tolerance at the system level in convolution calculations is now possible with recently

developed generalized cyclic codes defined over the rings and fields commonly employed for these

calculations. Modem high-speed convolvers use sophisticated arithmetic units operating over large

finite integer rings or with floating point approximations to the real or complex field. Error control

is attached directly to the data permitting protection of any form of parallel or distributed system

configuration. New systematic encoding and data manipulation techniques make error detection

with generalized cyclic codes straightforward and efficient. The necessary overhead parity

computations have complexity proportional to the number of parity symbols squared, whereas the

error-detecting capability for both random and burst errors is directly related to this parity number.

5- Numerical error effects are considered with regards to the tolerances necessary in the parity

calculation and comparison operation.

Infinite convolutions are protected using the error-detecting capability of real convolutional

codes. The normal convolution operation is surrounded with parallel parity channels, and

erroneous behavior is detected by externally comparing the calculated and recalculated parity

4.. samples thus eliminating any degradation in high-speed operation. A rate (k/n) real convolutional

code produces (n-k) parity samples for every k filter samples causing the parity channels to operate

at a rate decimated by k. Significant complexity reductions are possible by modifying the code

structure, without loss of error protection, yielding simplified parity channels with finite impulse

response (FIR) structures operating at rate decimated by k.

A statistical analysis of the modified code's error-detection comparator outputs provides an
4,

understanding of its threshold requirements and permits a bound on the comparator's noise

variance. The new method involving real convolutional codes is contrasted with another

previously proposed method which uses a block code for the states and output in a digital filter's

54

* --.. 4.. -. .- ..- %- ..-- - . -. .',. 4 .4 - . - --. .- - ,-. ,.., , l , -.- . ,,e .

state-variable realization. A parity comparison is required every sample instant and in general the

convolutional code approach is more efficient and flexible.

p

-v-

--

U' -I-

N...
N

r. D bt i o

-I. IL,.NlO

SA

p .1%

FINAL REPORT

FAULT-TOLERANT SIGNAL PROCESSING ARCHITECTURES
WITH DISTRIBUTED ERROR CONTROL

Supported by:

THE SDIO INNOVATIVE SCIENCE AND TECHNOLOGY OFFICE
through

GRANT N00014-86-K-0518
OFFICE OF NAVAL RESEARCH

DETACHMENT, PASADENA
1030 EAST GREEN STREET

PASADENA, CA 91106

Principal Investigator:

Professor G. Robert Redinbo
Department of Electrical Engineering

and Computer Science
University of California

Davis, CA 95616
(916) 752-3087

INTRODUCTION

As digital electronic implementations of arithmetic units become more dense through

shrinking VLSI technology and as their speed of operation increases, fault-tolerance will be needed

within arithmetic systems. The VLSI revolution has produced cheap, very high-speed, arithmetic

processors which can momentarily introduce errors in a simple calculation, a situation termed soft

errors. Error protection against such errors is a critical requirement. Erroneous calculations mustI
be detected as close to their source as soon as possible to avoid propagating incorrect values

beyond certain hardware and data boundaries, especially in distributed and parallel computing

systems.
4

The work and results have covered three different approaches to signal processing system

design. The first method employed a maximally parallel decomposition of the underlying

I "i arithmetic domain so that many individual processing sections, each operating over a finite field,

can process data efficiently in parallel. This allowed classical finite field error-correcting codes to

Ij.
'A

be incorporated independently in each processing path. The other two approaches viewed the

arithmetic domain either as a large finite ring or the real or complex field. New, recently

developed, error-correcting codes over these larger algebraic structures provide protection for finite

or infinite convolutions. Finite length convolutions are protected with real cyclic codes whereas

those with infinite length kernels rely upon real convolutional codes.

The results from each of these three approaches will be briefly described in the following

sections. The results on the parallel arithmetic decomposition have appeared in the open literature.

However, the newer results concerning applications of real codes are still in the publication

process. Hence, two very detailed appendices are included to fully document these results.

PARALLEL DE COMPOSITIONS

The first work directly embedding data protection within signal processing involved an

arithmetic decomposition of the data samples. The Chinese remainder theorem [1] provided the

basis for extracting finite field components from numerical samples. This approach distributed

cyclic codes, defined over the respective finite fields, throughout the architecture, greatly

increasing the overall reliability. These architectures used simple arithmetic and allowed powerful

error-control features to be built directly into all the parts of the system because the inherent

algebraic structures of error-correcting codes, over general finite fields, match the fundamental

operation in filtering convolution. Special structures associated with cyclic codes called minimal

ideals have very important algebraic properties, not only affording implicit error protection but
I

leading to fast maximally parallel implementation algorithms.

Signal processing operations, after the proper sampling, scaling, rounding and sequence

segmentation are viewed as being performed over a ring of integers modulo M where M is a large
positive integer [1]. Furthermore it is possible to decompose the implementation into many parallel

realizations by using residue number system techniques. When the modulus M is a product of

only distinct primes, the parallel decomposition results in subsections operating with finite field

arithmetic requiring very simple arithmetic processing. This situation is depicted in Figure 1,

2
I°

C RC

INTEGER T TMNEE

INPUT H H B OUTPUT

SEQUENCE E S E N SEQUENCE

T T

lowI

00

M PIP. p 8 Ps] pi PRIME

DENOTES PROCESSING USING
FINITE FIELD ARITHMETIC

* BASED ON PRIME pi

IARXLLEL DECOMPOSITION OF PROCESSING
* WHEN MODULUS CONTAINS NO MULTIPLE PRIMES

-F J(;t7RE 1

-% %

where each parallel subsection operates over the distinct finite fields denoted by GF(pi),

i=l,2,...,s. The arithmetic decomposition and recombination operations shown respectively at the

input and output in Figure 1 employ the Chinese remainder theorem. Three papers published in the

open literature fully describe this approach [2-4].

The results from this previous research indicated the importance of treating data as

significant entities to be protected. While the distributed finite field approach afforded adequate

protection, its applicability was restricted and effects of internal errors were difficult to predict

because of the arithmetic reconstruction process. However, one outgrowth of this work was the

interrelationship between cyclic codes and the important convolution operation.

FINITE CONVOLUTIONS

New published research provided powerful cyclic codes defined over real numbers [5]. In

addition, similar codes over finite rings which could be applied to fixed point processing were

described in the literature [6]. Concurrently digital electronic technology, principally in the VLSI

area, dictated that more arithmetic processing power for a given area was available and floating

point processors became widely prevalent.

It became possible to view convolution as an operator on arrays of data, as depicted in

Figure 2. and employ cyclic codes over the same arithmetic structure being used in the underlying

arithmetic processors. The results of this previous research are detailed in Appendix A and they

were reported in two International Conferences [7,81. (A full-length paper is currently under

review for IEEE Transactions on Acoustics Speech and Signal Processing [9].) The basic error-

detecting approach computes parity samples affiliated with each array, producing the output parity

matching the convolution output. The overhead operations in the parity recalculations are on the

order of the number of parity values squared. On the other hand, this number of parity positions is

identical with the error-detecting capability of the code. Error protection levels are a relatively

small fraction of long data arrays so that the additional complexity is quite low. Hence,

4

N0

~~J "i ~ / V A ' w " W y

I

a , a -a , a _

INPUT DATA cs-t Cs-t- cl.C 0

SEQUENCES
(VE CTORS) Convolution OUTPUT DATA

" b t b t- 1- . . 1 b ,c

\aibj - i
i=0

c j - t :j = 0, 1 , 2 .. . (s + t).
\Va j- ibi
i0

CONVO1LUTION OF ARRAYS
F1GVRE 2d ." ." "-" *" - , % % ° ,• " .• " % " "° . % o . ""% "'""-,, . °% "% "% "% "% "% 21.

• °
% .b

any filtering or signal processing operations involving finite-impulse-response (FIR) weighting

kernels are easily and efficiently protected by this method.

Convolution with finite length kernels are sometimes implemented via fast Fourier

transform algorithms; the data are transformed, weighted by the corresponding transform of the

kernel, and the resulting component-wise products inverse transformed. However, the overall

effect is cyclic convolution wherein the fimite length sequences are treated as periodically repeated.

Unless padding zero values are inserted at one end of the sequences there will be contributions

from overlapping segments. This is called cyclic convolution. Nevertheless this only slightly

complicates the error protection method using cyclic codes. The end-around effects inherent in

cyclic convolution must be separated and properly handled in the parity channel calculations. The

additional complexity is related to number of parity positions times the length of the shortest

sequence involved in the convolution. (See Appendix A.)

INFINITE CONVOLUTIONS

Another widely used form of signal processing employs input and weighting sequences

that are essentially infinite. They are usually realized with feedback paths and temporary storage

registers, and therefore present a different error protection challenge. Convolutional codes are

well-matched to this form of signal processing. But in a straightforward implementation using

parallel parity channels which compute the corresponding parity values the hardware and storage

S,-complexity are comparable to the original realization. Even though the computational rates in theS
parity channels are slower, the net increase in overhead is unacceptable. However, real

convolutional codes have extra degrees of freedom which permit significant simplifications in the

parity channels without reducing the error-detecting capabilities. (See Appendix B.) The parityS..
computations and recalculations use FIR realizations operating at reduced rates, lowering the error-

protecting overhead. This approach is outlined in Figure 3 where both parity channel groups have

effectively decimated input streams [101. The theoretical basis for this method of protecting infinite

weighting signal processing is detailed in Appendix B. Preliminary results were presented at an

AN4

0,6

i

PARALLEL
DECI- PARITY

CHANNELS PARALLELk MTO COMPARATO R

(FEEDFOR WARI)
ONLY)

' " DECI-*O MATION

IORIGINAL

CHANNELS

.". ..._FILTER
-:- -'-H(Z) "

(WrITH FEEDBACK)

,, INPUT OUTPUT

* EXTERNALLY PROTECTED FILTER SYSTEMFIGURE 3

0.

FILTE

-APPENDIX A

PROTECTING CONVOLUTION-TYPE ARITHMETIC ARRAY
CALCULATIONS WITH GENERALIZED CYCLIC CODES

INTRODUCTION

As digital electronic implementations of arithmetic units become more dense through shrinking

VLSI technology and as their speed of operation increases, fault-tolerance will be needed within

arithmetic systems. The VLSI revoiution has produced cheap, very high-speed, arithmetic processors

which can momentarily introduce errors in a simple calculation, a situation termed soft errors. Error

protection against such errors is a critical requirement. Erroneous calculations must be detected as close

- to their source as soon as possible to avoid propagating their effects beyond certain hardware and data

boundaries, especially in distributed and parallel computing systems.

High-speed convolution of data arrays is one common and important class of arithmetic

processing which needs adequate protection. Properly defined linear codes can protect the addition and

scaling of data arrays. However the convolution of such arrays while constructed from there simple

operation require more structured codes. This paper demonstrates how generalized cyclic codes,

defined over the rings and fields usually employed in such processing, may be incorporated directly and

quite naturally within the implementations of such arithmetic systems. The integrity of the output data is of

paramount importance whether the fundamental operations are shared among distributed or parallel

- processors, or concentrated in a single special unit. Furthermore, new encoding and parity manipulation

F .methods are developed which permit straightforward and efficient mechanizations. Errors are detected

immediately at the conclusion of the processing pass, allowing appropriate error control actions to be

initiated. Typical responses to detected errors may be to retry the calculation, reconfigure the overall

system, or enter a subsystem testing mode.

The central operation in signal processing or digital filtering is the convolution of data sample

sequences. These samples' arithmetic values may be viewed as algebraic elements in finite rings such as

the integers modulo an integer q, denoted by Zq, or as real or complex numbers, labeled respectively by

V.A iiA i

S ' . °

R and C. Typical ring representations include two's complement, where q = 2 m or one's complement with

q = 2m-1. The machine format can be either fixed or floating point.

The fundamental convolution operation may be displayed using mathematical symbols, starting

from the two data sequences.

DATA a a
; a,, b., eZq or R or C

SEQUENCES b0' b
1'

b 2 .' bt

Their convolution involves the well-defined operations in the underlying ring or field.

4
Y ,,.,-

Cj=0
.j = 0,1 , (s+t).(

.C i Y° aj-,bi

0=

In these defining equations, any sample with index outside the prescribed range is considered to be zero.

See Figure 1 for a schematic representation of the basic operation to be protected.

The convolution of a kernel function with a semi-infinite input data stream may be accomplished by

several methods. Two popular ones, overlap-add and overlap-save [1,2], segment the input data stream

into sections and perform the required convolution with a finite length kernel, preserving pieces of the

resulting outputs to be recombined into a single continuous output stream. Nevertheless the

fundamental approach remains the convolution of finite sections as described in equation (1).

r.. A modern view and the main point of departure for several recent texts [1-31 considers these

sequences as polynomials in an indeterminant X. Then convolution is intrinsic in the normal definition of

polynomial products.

c(X) = a(X)b(X)
6..

where (2)

2
a(X) = ao+a 1 X +aX +.. +a - {ao a,.... as}

b(X) = bo+blX +b2X2+. .. +btXt-4 {bo, b1 bt}

2 s+t
c(X) = Co+C 1X +c 2X+... +cX {C, C ... Cs+}

A-2

AA 1

a. a.- al, ,

a(X)

INPUT DATA .s+t, 3s+t- I......~ cl o

SEQUENCES

(VETOS)Convolution C(X)
btb-I...... bl, b

9.-,.

b(X)

i=0

c()--m N ~ -j tj=O, 1, 2......,(s+t).

CONVOLUTION OF ARRAYS

FIGURE 1

4.y

".

The polynomials in these cases belong to an algebraic structure, the commutative ring of polynomials,

usually given the respective symbols Zq[X], R[Xj and C[X].

Many fast signal processing algorithms rely upon the mathematical properties arising from this

polynomial view. For example, when an exponent k is chosen sufficiently large, an equivalent form of

- equation (2) makes the algebraic structure even richer by introducing residue class rings modulo (Xk-1),

c(X) -a(X)b(X) modulo (X -1); k > s+t+1 (3)

The potential for protecting such operations with cyclic error-correcting codes is obvious in light of this

equation. Cyclic codes are defined and manipulated as polynomial residue algebras, and their common

fundamental processing operation involves polynomial products [4]. Thus it is natural to investigate cyclic

%Q, codes as a powerful means of detecting errors in these types of operations.

In order to apply cyclic codes to the arithmetic setting being considered here, two hurdles must be

overcome. Firstly, most cyclic codes are defined over finite fields, primarily because their design depends

upon roots of polynomials in extension fields. Secondly, and equally as important, no previously known

data encoding format exists which leaves the data symbols in their unaltered form while appending the

proper parity symbols when passed through the polynomial product operation. The data and parity

positions become intermixed when processed this way. The first difficulty is resolved by generalized

cyclic codes which have been studied only recently [5,61. These types of codes will be motivated and

-. detailed below. In addition, real cyclic codes for use with floating point formats will be explained including

examples. The second problem is solved by a new systematic encoding approach.

* GENERALIZED CYCLIC CODES

Cyclic codes represent a powerful and wide class of codes with easily determined guaranteed

distance properties that can be used for detecting both random and burst errors. They are naturally

,% defined in a residue class ring of a polynomial algebra using the modulus (Xn-1), where n is the code

length [4]. One feature guarantees that every cyclic end-around shift of the elements comprising a code

-. . polynomial is also a code polynomial, the significance of the modulo (Xn-1) reduction.

*. Generalized cyclic codes will be explained using a generic algebraic structure F which is at least a

commutative ring with identity. Such a structure also covers the fields of real numbers R and complex

A-4

%4, 4.*

numbers C. The ring of polynomials FIX], the set of polynomials in indeterminant X, can be reduced to a

residue class residue class ring using (Xn-1), [4]. This new structure is written symbolically as F[X]/(Xn-1).

A generalized cyclic code is defined by a single generator polynomial, g(X), whose leading term is

a unit in r. The code is a principal ideal generated by g(X), denoted by ((g(X))), and formally defined as

((g(X))) = {p(X) - q(X)g(X) modulo (Xn-1) q(X)cI"[X]} (4)

The degree of g(x) is (n-k), the number of parity positions contained in the code. Construction

techniques for the generator polynomial depend on the exact nature of r. Nevertheless, the Euclidean

Algorithm is a common underlying principle. It guarantees unique quotients and remainders for division,

provided that the highest indexed coefficient in the divisor g(X) is a unit (invertible) element of P. Since

this general result will be cited later, it will be included here [8]; for any f(X)c[X] there exist polynomials

q(X), the quotient, and r(X), the remainder, such that

f(X) = q(X)g(X) + r(X) ; degree {r(X)} < degree {g(X)} (5)

The Euclidean Algorithm also shows the burst detecting capabilities of a cyclic code. A burst is a

consecutive segment of a code word's elements which has the beginning and ending elements of the

segment in error, and permitting any number of erroneous position in between [7]. Since the code is

*~." cyclic, a burst can also occur in an end-around sense. A burst can be modeled by adding an error

polynomial of the form XUe(X) to the code word. However a disruption like this can always be detected as

long as g(X) does not divide e(X). (Remember every code word by construction (4) is a multiple of g(X),

arid thus a burst divisible by the generator polynomial is undetectable.) When the polynomial part, e(X), of

*_ the burst error polynomial has degree less than that of g(X), this division is impossible, providing the burst

detecting ability of (n-k) positions.

,, Cyclic codes over the real or complex fields are defined by using consecutively indexed powers of

0,7 the nth complex root of unity, e.g., [exp(j2n/n)p], where j = I and p is any integer modulo n. The

fundamental construction techniques are given by Marshall [6], and use the discrete Fourier transform

., domain in which contiguously indexed transform coefficients determine the generator polynomial. By

requiring conjugate roots be included, real generator polynomials are constructed. In the more general

case of complex numbers, maximum distance separable codes [4] (analagous to powerful Reed-Solomon

A-5

FS

-Z I

codes) are easily established. Such codes can detect erroneous positions equal in number to the degree

of g(X), the maximum permitted by the Singleton bound [4].

Generalized cyclic codes over finite integer rings, Zpm, can be defined by first examining roots in

some extension field of the finite field Zp, p a prime number [5]. Primitive elements in this extension field

are studied as members of a multiplicative cyclic group in Zpm. Again, consecutively indexed roots and

their conjugates are used in constructing the generator polynomial with the desired error-detecting

parameters. The most general situation for Zq involves fields and rings associated with the prime factors in

the integer q. The Chinese Remainder Theorem [1] allows components over Zpm to be reassembled,

defining a generator polynomial over Zq. The lengths of segments of adjacently indexed roots guarantee

the detecting performance of the final code.

Real cyclic codes, primarily applicable to floating point arithmetic formats will be examined in

slightly more detail so as to better exemplify the parity operations to be discussed later. They are
O

constructed using consecutively indexed primitive roots of unity [6] and were original called Discrete

Fourier Transform (DFT) codes [14,15]. Powers of the nth complex root of unity, W, define the roots of

the code generator polynomial g(X).

g(X)= nJ(X-Wr) : Wj2 :

n

R = INDEX SET OF CONSECUTIVE INTEGERS MOD n

R c {0,1,2 , (n-1)}

The span (number of consecutive indices) determines the error-detecting capability of the code

and is the maximum allowable for a linear code [4]. In this regard they closely resemble the BCH and Reed-

Solomon codes defined over finite fields [4,7]. The code can detect up to IRI symbol positions in error

considering the roundoff tolerance of the comparison operation.

S.. However if the index root set is symmetric about 0 (and including 0) or about n/2 (and including

.N. n/ 2 if n is even), conjugate root pairs appear in g(X), giving it real coefficients. This restriction narrows the

range of parameters permitted in the code slightly (see Property 3 of [61), but does not reduce the error

. ~ protection levels in any way. In addition, the real coefficients of g(X) are also symmetric or anti-symmetric

A-6-" ,.

e ;,,*

about the degree midpoint halving the number of multiplicative operations needed in parity calculation

and re-calculation.

A power of the primitive complex root, W m , where m is relatively prime to n can be used in place of

W in the definition of g(X). A different code results with the same error-detecting capability but with roots

located at more widely dispersed points on the unit circle. This eases the accuracy requirement in

calculating and using the coefficients in g(X). A simple example for a code with length n = 1024 and

,,. information capacity k = 1003 using an index scaling factor m = 47, has capability of detecting up to 21

positions in error or any burst up to length 21. Figure 2a displays the generator polynomial while in

contrast Figure 2b shows the generator polynomial for the same quality code but with root index scaling

factor m = 23. The coefficients in the latter example are larger and have a wider magnitude range. Equally

good codes may be centered about -1 = W5 12 , but they have different coefficient signs since (X+I) is the

only linear factor.

These techniques along with others [9-12] insure the availability of a variety of generalized cyclic

codes that can provide a wide choice of random and burst error-detecting abilities. With the existence of

*- good cyclic codes over the proper rings and fields established, the second problem of efficient systematic

encoding and parity manipulation of the code word symbols will be addressed.

SYSTEMATIC DATA ENCODING AND PARITY MANIPULATION

One important requirement of any protection scheme is the location and manipulation of the

original data and associated parity symbols without additional processing. There are several methods for

encoding data code words with this feature, generally referred to as systematic encoding [7]. However

when two such encoded code words are producted (to implement the convolution), the corresponding

parity symbols are not easily distinguished except with complicated processing. This section will first

demonstrate a standard systematic encoding technique from which the respective data and parity may be

extracted easily. Then a new approach will be given for processing and combining the respective parity

parts to yield the new parity values corresponding to the convolved data segments.

A common systematic encoding scheme relies on the Euclidean Algorithm for uniquely defining

the parity positions [7]. The data portion, say a(X), is placed in the higher indexed positions, by multiplying

by Xnk, effectively shifting to data to inclusively indexed positions, (n-k), (n-k+1) (n-i). The uniquely

% A-7

%S

*%, ~2?

g(X) = -1.O00000e+O0 +7.882733e-01 X1 -7.063940e--O1 X'

+6.591348e--O1 X3 -6.277460e--O1 X 4 +6.055386e-01 X'

-5.894287e-01 X 6 +5.777794e--01 X 7 -5.696514e-01 X 8

+5.644898e--O1 Xg -5.619806e--O1 X ° +5.619806e-01 X"

-5.644898e--01 X 2 +5.696514e--O1 X 13 -5.777794e--1 X 14

+5.894287e--O1 Xis -6.055386e--O1 X 16 +6.277460e-01 X 17

-6.591348e--01 XIS +7.063940e-01 X 19 -7.882733e--01 X' °

±1.000000e+00 X
21

Generator Polynomial With Root
Index Scaling m=47.

Figure 2a.

g(X) = -1.O00000e+O0 +1.412738e+01 X' -9.916219e+01 X 2

+4.5951 lOe+02 X 3 -1.575823e+03 X 4 +4.249810e+03 X5

-9.350972e+03 X6 +1.719101e+04 X 7 -2.682654e+04 X 8

+3.590434e- -04 X' -4.147518e-+04 X 1) +4.147518e-+04 X 1 1

-3.590434e-+-04 X 12 +2.682654e+04 X 13 -1.719101e+04 X 14

+9.350972e+03 X' s -4.249810e+03 X 1 6 +1.575823e+03 X 1'

.1 -4.595110e+02 X' +9.916219e+O1 X 9 -1.412738e+01 X 20

* + 1.000000e +00 X-

Generator Polynomial With Root
Index Scaling m=23.

Figure 2b.

n =l1024 ; k=1003.

R? IlEAl, CYCLIC COI)E GENERATOR POLYNOMIAL EXAMPLES
FIGURE 2

e " t -W ' e"."
% %%

0-

related parity symbols are represented by the polynomial ra(X), derived from equation (5) with g(X) as the

,- .'- divisor.
{n-k X<e gX 6

{x a(X)} = qa(X)g(X) + ra(X); deg ra(X)<deg g(X) (6)

The code word affiliated with data a(X) is given by

a(X) -ENCODE.) [Xnka(X) - ra(X)]

A simple transposition in equation (6) shows that this is indeed a multiple of g(X), the defining property of a

cycTic code word (see equation (4)). Furthermore the parity values represented by ra(X) do not interfere

" .4 wth the original data, now shown as xn-ka(X), in their shifted positions. A similar encoding also applies to

data b(X), where rb(X) is the unique remainder analogous to equation (6).

t..'.'.ENCODE

b(X) > [Xn'kb(X) - rb(X)]

The protection of the convolution of two code words is considered. If the two respective code words for
0

- a(X) and b(X) are producted, it is easy to see the intermingling and overlapping of parity and data parts.

However the data portions are easily extracted and producted. Then the question is: how can the parity

parts ra(X) and rb(X) be processed to yield the correct parity? In symbols, what relationship exists between

ra(X) and rb(X), and the new parity rab(X) related to the product a(X)b(X)?

[a(X)b(X)] -NCODE {Xn-k[a(X)b(X)] - rab(X)}

This new parity part is the remainder in the division by g(X).

, .- n-k
rab(X) X [a(X)b(X)] mod g(X) (7)

The answer to be demonstrated in the next paragraph is computationally straightforward.

rab(X) f(X)ra(X)rb(X) mod g(X) (8a)

where

f(X) - Xk mod g(X) (8b)

The validity of the above claim revolves around showing that the expression {Xnk[a(X)b(X)]-rab(X)} is a
C".

'C. multiple of g(X), modulo (Xn-1). In this regard two identities need to be compiled. The first comes from

equations (8) which imply that there is a quotient qab(X) satisfying

A-9

,%4%-A. 77 S

rab(X) = Xkra(X)rb(X)- qab(X)g(X) (9)

The second needed expression follows from the coded form of b(X), similar to equation (6), this time

implying another quotient qb(X).

b(X) - xnb(X) X {x'b(X)} mod (xn-1)

X kq (X)g(X) + Xkrb(X) mod (Xn-1) (10)

These identities when combined with equation (6) permit the following series of equalities.

{xnk [a(X)b(X)] - rab(X)} - [qa(X)g(X) + ra(X)][Xk qb(X)g(X) + X krb(X)]

-[Xkra(X)rb(X) - qab(X)g(X)] mod (Xn-1)
g kq q)Xk q)r

g(X){Xkqa(X)q(X) + X q(Xa)ra()

+ Xqa(X)rb(X) + qab(X)} mod (Xn-l)

, The very construction of rab(X), equation (8a), guarantees that

deg rab(X) < deg g(X)

On the other hand, the Euclidean Algorithm asserts a unique remainder polynomial associated with the

S. encoding of [a(X)b(X)]; equations (8) provide that polynomial and it has degree less than (n-k) also.

The use of this systematic encoding in a fault-tolerant realization for convolving sequences

represented by a(X) and b(X) is shown schematically in Figure 3. The steps in forming the new

systematically encoded code word are easily identified with straightforward manipulations. The protection

overhead is governed by the modulo g(X) operations, which in turn are proportional to the degree of g(X),

,*,the number of parity positions employed by the code. Even the regeneration of the parity symbols,

needed in the totally-self checking comparator [131, depends on the code generating polynomial g(X).

The complexity of the modulo reductions will be discussed in the next section.

S . The required parity calculations according to equations (8) may be performed in several orders.

The modulo g(X) reduction may be applied after each product or the complete product f(X)ra(X)rb(X) may

be formed, necessitating more storage, before the modulo reduction is done. Two options are depicted

in Figure 4. The parity weighting factor f(X), equation (8b), for the two respective example generator

A-i 0

%*

CODE WORD FOR a(X) CODE WORD FOR b(X)

a(X) b(X) - rb(X)]

f(X)_Xk f(X) r.(X) rb(X)(Mod g(X) Mod g(X)

RESULTANT CODE WORD

(rk a(X) b(X) }-rabX

IMod g(X)l

TOTALLY Error
SELF-CHECKING Detection

COMPARATOR

USE OF SYSTEMATIC ENCODING FORMAT
IN PROTECTING CONVOLUTION {a(X)b(X)}

FIGURE 3

.5"

1.

O(Xrab(X)

Products Followed By Modulo Reduction
Fig-ure 4a.

ce(X) r~b(X)

Intermediate Modulo Reduction
Figure 4b.

S ORDER OF PARITY CALCULATIONS
FIGURE 4

20

f(X) --+1.550571e--01 +1.015542e+00 X' -2.462610e--01 X 2

+1.692161e-01 X 3 -1.386988e-O1 X4 +1.218860e-01 X'

-1.1 10590e--01 X 6 +1.034289e--O1 X 7 -9.773097e-02 X8

+9.330137e--02 X9 -8.975209e--02 X' 0 +8.683481e--02 X 1

-8.437486e--02 X12 +8.223395e--02 X1 3 -8.028343e--02 X1 4

+7.837660e-02 X 5 - 7 .630670e--02 X1 6 +7.372199e-02 X"7

-6.991635e-02 X 18 +6.320080e--02 X19 -4.84167ge--02 X 20

. X 00 3 MOD g(X)

(g(X) from Figure 2a.)

Figure 5a.

f(X) +2.360182e+02 0-3.292485e+03 X' +2.281767e+04 X 2

-1.043690e--05 X3 +3.531499e+05 X 4 -9.391855e+05 X'

+2.036301e+06 X6 -3.685237e+06 X 7 +5.654087e+06 X 8

-7.428145e+06 X9 +8.405427e+06 X 10 -8.211695e+06 X 11

+6.920363e+06 X1 2 -5.009762e+06 X 13 +3.090042e+06 X' 4

-1.602602e+06 X' 5 +6.8463 7 4e+,05 X ' 6 -2.332175e+05 X 17

'p.

+5.998405e+04 XIs -1.049345e+04 X 19 +9.556912e402 X 20

'p X 10 0 3 MOD g(X)

(g(X) from Figure 2b.)

* Figure 5b.

PARITY WEIGHTING FACTOR f(X) EXAMPLES
FIGURE 5

-%,

0
Npolynomials given in Figure 2 are shown in Figure 5. They are distinguished by the index scaling values of

47 and 23.

There are situations where one of the sequences to be convolved is fixed and known in advance.

For example, b(X) could be the impulse response of a digital filter [1,2]. The previous technique can be

used to store the known sequence and its precomputed parity positions. For a predetermined sequence

represented by b(X), the stored positions correspond to the code word {Xn-kb(X) - rb(X)}. One

simplification allows the parity positions rb(X) to be combined with f(X), equation (8b), reducing the number

of operations required for rab(X). However, there is an alternate, equally effective method for handling this

special circumstance.

The known sequence, say b(X), is also stored in its reduced form modulo g(X). Then the

systematically encoded code word related to [a(X)b(X)] is given by
-,n-k

X nk[a(X)b(X)] - r0(X)

where the parity positions are defined uniquely as

ro(X) - (X)ra(X) mod g(X) (12a)

3(X) - b(X) mod g(X) (1 2b)

The correctness of this approach is easily demonstrated by noting that equations (12) insure the

-existence of a quotient q0 (X) and remainder r0 (X) giving

3(X)ra(X) = qo(X)g(X) + ro(X) (13)-v
After cancellation of terms, the code representation for [a(X)b(X)] is clearly a code word.

S

X nk[a(X)b(X)] - ro(X) - g(X)[qa(X) + qo(X)] mod (Xn-1)V"
V"

V. Thus this abbreviated method still produces a code word, with all the error detecting potential of the code,

6 but with a simpler formula for the parity portion.

This reduced special case occurs because only one of the parity parts ra(X) emanates from

xn-ka(x), allowing ease in separating the effects of data and parity. The slightly less complex

implementation of this method is depicted in Figure 6. The residue of the fixed sequence 3(X) is stored as

well to expedite the parity formation.
A-14

%0

* '-- V

CODE WORD FOR a(X)

1 FIXED STORED
[Xn - k a(X) - ra(X)I COMPONENTS

b(X)

-(X) _ b(X)
Mod g(X)

a(X) b(X)

,.~. ~ ra(X) ON(X

Mod g(X)

RESULTANT CODE WORD

'.

1XrI-k {a(X -(X ro(X)

Mod g(X)l

. TOTALLY Error
SELF -CHECKING Detection

COMPARATOR
..

.52

- PROTECTING CONVOLUTION WHEN ONE
SEQUENCE IS KNOWN

FIGURE 6

S.:
.:.

Another situation of interest is cyclic convolution which is sometimes a byproduct of the

implementation methods. For example, Fourier transforms used to form a convolution intrinsically

produces cyclic convolution r2,16]. Cyclic convolution treats two sequences as periodically extended so

that any components developed during the convolution process lying beyond the basic length are

effectively wrapped around. The polynomial equivalent of length k cyclic convolution is described

through a modulo reduction using factor (Xk-1).

k
- a(x)b(x) d(x) mod(X -1)

The cyclic convolution is the remainder part in the Eucledian Algorithm while the quotient, t(x), will be

important shortly.

% a(x)b(x) = t(x)(x k-1) + d(x) ; deg d(x) < k (14)

The product a(x)b(x) represents the linear convolution which is modified by shifted versions of t(x) yielding

- the cyclic convolution d(x).
k

d(x) = a(x)b(x) - x t(x) + t(x)

-. The shifted terms in xkt(x) are subtracted from the linear convolution eliminating terms beyond Xk whereas

t(x) is added into the lower terms, the end-around effects.

The parity positions corresponding to the cyclic convolution is rd(x) defined in an equation

reminiscent of equation (6).

X n'kd(x) qd(x)g(x) + rd(x) mod(Xn-1) (15)

Previously given expressions for a(x) and b(x) involving ra(x) and rb(x) respectively may be substituted into

equation (14), expressly showing the dependency of c(x) on these parity parts. Equation (15) then

relates there original parity terms to the desired parity part rd(x) where several simplifications are possible

particularly because to the modulo (Xn-1) reduction.

n-k k

rd (X n-1)t(x) - X ra(x) rb -

{Xk[qa(x)qb(x)g(x) + ra(X)qb(X) + rb(x)qa(x)] - qd(x)}g(x) (16)

* However g(x) divides (Xn-1), by the code's construction, permitting an identity modulo g(x).

'.

A-1 6

I%

-'S~ ~ .~ -% S '

r' n'k-)t(x) + X kr(x)rb(x) mod g(x) (17)d (X) (X -1)tx+ xr.xax,(7

The new parity related with cyclic convolution d(x) contains the weighted and reduced product of the

inputs' parities, as in equation (8a), and a component involving the end-around modification t(x) inherent

in cyclic convolution. Its weighting factor is e(x).
*5

rd(x) e(x)t(x) + f(X)ra(x)rb(x) mod g(x) (1 8a)
=(n-k_

e(x) - 1) mod g(x) (18b)

Thus the cyclic convolution parity requires knowledge of the end-around terms, either directly or through

a modulo g(x) reduced version.

COMPLEXITY OF PARITY GENERATION

There are numerous ways to realize the convolution and modulo reductions prescribed in the

previously described methods. They range from distributed arithmetic processors to time-multiplexing a

high-speed ALU resource. In order to study the general complexity, realizations as shown in Figure 7 are

considered. Both the parity calculation and recalculation operations involve reduction modulo g(X). For

example, the (n-k) parity positions represent the remainder after g(X) is divided into a shifted version of the

information data, equation (6). Figure 7a shows one viewpoint of the process using a feedback

configuration. The k data samples are inserted serially and the remainder is developed by the feedback

paths effecting the polynomial division.

On the other hand, a slight modification of the basic feedback configuration computes the

product ra(X)rb(X) modulo g(X). Figure 7b depicts such a system where the parity values in ra(X) represent

the inputs. Furthermore the output from this system can be passed through a similar configuration where

the input scaling taps are defined by f(x) to produce the parity calculation dictated by equation (8a).

These basic principles are central to all other configures including a wide range of distributed and

parallel computational schemes. Nevertheless the polynomial reduction process is essentially sequential,

and the viewpoints in Figure 7 are typical of the complexity. There are (n-k) storage locations in Figure 7

and the leading coefficient of the code generating polynomial g(X) is taken as 1, without loss of generality.

The lower portion of this figure implements the product ra(X)rb(X), while the feedback path in the upper

part performs and mod g(X) reduction simultaneously. As noted earlier, in real cyclic codes the

A-17

6

I ' .- .. - ,N * -~

FEEDBACK

-I Input

a(X) HIGHEST TERMS FIRST

aO. a . ak-2, ak-1

Remainder Is Contents
After Last Position Entered

HIGHEST ORDER TO THE RIGHT

Part Of Parity Generation
:r.(Xxnka(X) Mod g(X)

Figure 7a.

:4

PARITY GENERATION OR REGENERATION
FIGURE 7

%. Z

--,

OI

- FEEDBACK

rb(X)

Ti" - -th 0 X --rb.1 --rb,n k _2 X (--rb,n k- _l PART

r.(X) HIGHEST TERMS FIRST

r. , . rsan-k-2" ran-k-I
@

Answer Remains In Registers,
HIGHEST ORDER TO THE RIGHT

Part Of Parity GenerationS
-{r.(X)rb(X)} Mod g(X)

Figure 7b.

IAITY GENERATION OR REGENERATION
FIGIUi 1 7

S.,

0 '

I

coefficients of g(X) have symmetric or anti-symmetric properties about the midpoint. The number of

multiplications in the feedback path can be halved approximately. This property, however, will not be

assumed in the complexity estimates below.

One complexity measure may be a count of the number of multiplications and additions required.

The product part needs multiplications and additions on the order of the following estimates.

{ MULTIPLICATIONS: (n-k)(n-k+1)
PRODUCT PART

ADDITIONS; (n-k)(n-k-1)

On the other hand, the modulo reduction is heavily influenced not only by the degree of g(X), but also by

the number of nonzero coefficients. The notation IgI will denote the number of nonzero terms in g(X),

including the leading coefficient presently assumed to be 1. Then the additional number of multiplications

and additions for the feedback part may be estimated.

MODULO (MULTIPLICATIONS: (n-k-1)(Jgl-1)
REDUCTION
PART .ADDITIONS: (n-k-1)(IgJ-1)

These estimates will be helpful in projecting the overall complexities. The are two different approaches

that may be taken in realizing the parity calculations dictated by equation (8a). One approach would first

form the triple product {f(X)ra(X)rb(X)], yielding a polynomial with possible highest degree 3(n-k-1),

followed by the modulo reduction. This approach uses more interim memory locations. An alternate

method would interconnect two configurations of the type in Figure 7b. With this realization equation (8a)

is implemented in two stages (see Figure 4b), say first producing

6 o(X) = ra(X)rb(X) mod g(X)

and then completing the calculations with

rab(X) = (X)f(X) mod g(X)

Straightforward estimates show that either approach employs on the same respective orders of

multiplications and additions.

A-20

& 'eu

f 2
ORDER OF MULTIPLICATIONS: 2[(n-k) + (n-k-1)(Igf-1)]
PARITY GENERATION
COMPLEXITY ADDITIONS: 2(n-k-1)[(n-k) + (Igi-1)]

The dominant factor in both items is (n-k)2 , a quantity related to the number of parity positions in the code,

and the error-detecting ability of the system.

SUMMARY

Recently proposed generalized cyclic codes defined over the common arithmetic structures

usually employed in practical data processing implementations dictate the parity samples for protecting

convolution operations. The parity positions associated with each input array are convolved along with a

simply defined, comparably sized, stored weighting array. A wide range of quite powerful generalized

cyclic codes are available with protection levels proportional to the number of parity positions. The new

,. -systematic encoding and processing techniques make the system realization straightforward and efficient.

, The protection effort requires additional arithmetic complexity on the order of the number of parity

positions squared.

REFERENCES

1. J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing. Englewood Cliffs,

New Jersey: Prentice-Hall, Inc., 1979.

2. H. J. Nusbaumer, Fast Fourier Transform and Convolution Alaorithms. New York: Springer-

Verlag, 1981.

3. R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, Massachusetts: Addison-

Wesley Publishing Co., 1985.

- 4. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, Second Edition. Cambridge,

Massachusetts: The MIT Press, 1972.

5. P. Shankar, "On BCH Codes Over Arbitrary Integer Rings," IEEE Transactions on Information

,Th,, Vol. IT-25, pp. 480-483, July 1979.

6. T. G. Marshall, Jr., "Coding of Real-Number Sequences for Error Correction: A Digital Signal

Processing Problem," IEEE Journal of Selected Areas in Communications, Vol. SAC-2, pp. 381-

392, March 1984.

A-2 1

7. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Apolications. Englewood

*. Cliffs, New Jersey: Prentice-Hall, Inc., 1983.

8. N. Jacobson, BasicAlgeraJ.L San Francisco: W. H. Freeman and Co., 1974.

9. I. F. Blake, "Codes Over Certain Rings," Information and Control, Vol. 20, pp. 396-404, 1972.

S". 10. I. F. Blake, "Codes Over Integer Residue Rings," Information and Control, Vol. 29, pp. 295-300,

1975.

11. E. Spiegel, "Codes Over Zm," Information and Control, Vol. 35, pp. 48-51, 1977.

12. E. Spiegel, "Codes Over Zm, Revisited," Information and Control, Vol. 37, pp. 100-104, 1978.

13. J. Wakerly, Error Detecting Codes. SeIf-Checkino Circuits and Applications. New York: North-

Holland, 1978.

14. J. K. Wolf, "Redundancy, the Discrete Fourier Transform, and Impulse Noise Cancellation," IEEE

Transactions on Communications, Vol. COM-31, pp. 458-461, March 1983.

15. J. K. Wolf, "Redundancy and the Discrete Fourier Transform," Proceedings of the 1982

Conference on Information Sciences and Systems, pp. 156-158, 1982.

16. N. K. Bose, Digital Filters Theory and Apllications. New York: North-Holland, 1985.

, .1

l'o

p;.i

6

A-22

r. d ,

APPENDIX B

PROTECTING HR FILTER REALIZATIONS WITH
EMBEDDED CONVOLUTIONAL CODES

INTRODUCTION

Digital filter implementations need to be protected against both hard and
soft failures emanating from their underlying electronic realizations. The level of
protection may range from the detection of erroneous behavior to the correction of
faulty outputs, a situation sometimes referred to as error masking [1,21. Many
protection mechanisms rely on placing redundancy, either internal or external, in
the normal system operation, and structured linear block or convolutional codes
3.4. represent controlled redundancy which can be used for this purpose. Such

codes have their early foundation in communications systems and are generally
defined over finite algebraic structures because of the nature of digital communica-
tions. However, newer classes of codes have been developed with symbols from
the real or complex number fields 5j, the same algebraic setting for digital filter
realizations.

This paper presents a new method for protecting digital filters by employing
the error-detecting distance properties of real convolutional codes. The normal
filter system will be augmented with adjacent parallel parity calculations whose
values are compared against parity quantities recalculated from the normal

system's output. Certain classes of errors occurring anywhere in the overall sys-
tem including the parity calculation and recalculation subsystems are easily
detected. Furthermore in this way the speed performance of the original filter's
operations is not adversely affected. A convolutional code is ideally suited to the
fundamentally infinite processing involved in Infinite Impulse Response (IIR) filter
designs. Because of the inherent feedback within this type of filter realization,
errors can propagate and increase ultimately overwhelming the protecting distance
of the code. This is particularly true for block codes where framing a large
number of errors in one block can easily exceed the code's detection capability.
On the other hand. a convolutional code with its continuously increasing memory
can sense the onset of errors before they increase beyond detection limits.

A systematic real convolutional code [3,5] of rate k is applied externally to an
digital filter, producing (n-k) parity samples for every group of k data samples

processed in the normal filter. A corresponding group of (n-k) parity values is
recalculated from the filter's output samples and compared against the group cal-
ciflated in parallel. Each group is produced by parity filter channels operating at

a rate decimate.d by k 6

. . .- 1

S%

Significant savings in the parity channels' complexity are achieved by modi-
'ying the real convolutional code, with minimal impact on its error-detecting

capability, thus greatly simplifying their implementations. Equivalent perfor-
mance is possible with only Finite Impulse Response (FIR) filter structures in
these parity channels, permitting the decimation to commute with the filters
themselves 16'.

The theory and practice supporting the code modification techniques are fully
developed. An example demonstrates the general method. A statistical analysis
of the error detection system guides the selection of thresholds at the parity com-
parison unit, and bounds on the comparator's output noise are established. An
alternative method using block codes involving both internal states and the out-
put at every filter sample is analyzed. This state variable realization may be
viewed externally and compared with the new convolutional code approach show-
ing the latter's greater flexibility and efficiency.

The next section develops the theoretical basis for embedding real convolu-
tional codes around a digital filter system without degrading the speed perfor-
mance. The necessary parity channel filters are defined and described. The follow-
ing section examines modifying the convolution code without loss in error protect-
ing performance while simultaneously simplifying the parity channels' realizations.
A practical approach to code modification is presented where a simple example is

detailed. A statistical analysis of the parity comparator's output noise is
developed and a bound on its variance is given. In the final section an alternate
method which uses block codes and a state-variable realization is examined.

CONVOLUTIONAL CODES IN FILTER REALIZATIONS

General digital filters and IIR filters in particular may be expressed in several
equivalent ways with some viewpoints more similar to convolutional code struc-
tures than others. The transfer function (pulse transfer function) [7-91 is formally

S,related to a filter's difference equation through the Z transform.

DIFFERENCE EQUA TION

v (k)=N'au(k V; (1)

u (i) Input Sequence

tv(k) Output Sequence

z'jk =O, 1, 2..

The input and output samples, u(i) and v(i) respectively, are undefined for nega-
tive index values (or assumed to be zero).

TRA NSFER FU ,NCTION

,11- 2

-%...-".

0
-A

H(Z) - , (2)

where the components in the ratio are Z transforms of the respective input and

output sequences. They are related to the difference equation's governing
coefficients.

V(Z) =j v(i)Z (3a)

""u(z) =, (iz- (3b)
i=0

ao+a 1Z-'+a2 Z 2 .. . +a ,Z-v

H(Z) = - Z; b0=1 (3c)Sbo+b xZ-I+b2Z-.......... +b Z-

The impulse response is the inverse Z transform of H(z) and provides another
"* representation of the input/output relationship.

..."~ H(Z) --- {h, }

u (k) = \ I, I (k-)= ,1,2 (4)
j O

Another equivalent expression for an 1IR filter employs semi-infinite indexed vec-

tors and matrix.

.u= u(0), u(1), u(2) INPUT ROW VECTOR

v(0), v(1), v (2). OUTPUT ROW VECTOR

be

1 - 3

e

,. ;_.-._,....,, ...,....,:...,. .:,.. , . , , ,.,-e -- *, ' be ..,., :. '

I

10 t h 1 h2 h 3 h 4 - - - -
%()

0 h I I h3 - - - -

0 0 h0 h 01 - - - -

F 0 0 0 h0 h - - - -

0 0 00 0

0 0 0 0 0

P : I I I I I I I I I

]r =.uF (5)

Convolutional codes have a similar defining structure. Although traditionally
defined over finite field alphabets [3], recent research results show how they may
be extended to systems using either integer or real arithmetic 15j. Nevertheless,
the basic approach to convolutional codes remain the same, particularly with
regard to a matrix description of the encoding and parity checking functions.
Only systematic forms of convolutional codes, a situation where the information
positions are clearly identified in the encoded output, will be considered primarily
because they are well-suited to checking the filtering operation and are automati-
callv noncatastrophic 1 [3 1

The encoding matrix for a systematic convolutional code, G, has a block-type
format involving in fundamental finite sized matrices whose dimensions are
related to the rate and number of parity check positions in the code. The parain-
eter m determines the constraint length of the code.

4

A catastrophw convolutional code permits a finite number of errors to produce a valid code sequence imply-

ing a -onf , with an infinite number of errors

Bl - .1

4M --

G o GG 1 - GM 0 -

0 G 0 -- G-1 G, -

0 0 - - Gm- 1 -

o00 I I - I
0 0

[Go Gi

G0 GoI I I o Co I
:' ' I I I I I I I

Each submatrix G' is kX72 where the ratio k is called the rate of the code and
n

(n-k) is the number of parity positions provided for every k input digits. For the
systematic case, matrix Go has a particularly distinctive form.

" G, = fI P, I k>Xk Identity Matrix (7a)

. P0 k X(n -k) Parity-Check Matrix

G3 10 1 P3 1 0 kyk Zero Mat.-I'x (7b)
P k X(n -') Parity-Check Matriz

I 3"=1,2, . . . , n.

The entries in the parity-check submatrices, Pi are either 0 or 1 even for the
real arithmetic case !5. Encoding the input data stream, represented by infinite
row vector v, produces an infinite output row vector -w with (n-k) parity-check
positions interleaved as a subblock between every block of k input values.

B - 5

% %,dL% N ? ,, ,

~v G'" u,= vG(8)

it (0)i(1),..., ,' (k- l(k), w (k+1) ... ,w n--1)l ww(n,

Parity Positions

uW(n+1) ' (n+k-). z(n+k), u'(n+k+1),..., w(2n-1), w(2n), u,(2n +),

Parity Positions
u,(sn+k), w(sn +k+1), . w.((s +)n-1),.

Parity Positions

The parity positions interspersed between groups of k input digits are an effect of
the stacks of the (rn-i) matrices Go, G1, . . . ,Gm in the block-shifted format evi-
dent in G. In particular, the (k Xk) identity matrix, I, part of matrix Go, copies
the input data from _ directly through to the identical groups in -w

C.-
.".:

u w(su -+j) = z(sk +j) s=0,1,2 (9)
' '._',j=0,1,2, . .. ,(k-1).

4
The parity positions are a function of possibly (m+l)k input samples

through the action of the P1 parts of each Gj. The stack of these parity weight-
ing values will be denoted bv an {(m+1)kX(n-k)} matrix Q with respective
columns k/.

P,

- = iI = q ,qj, q _z.=.-. (1Oa)

S.

-.

- -6

WI~h -,-&

q, ((q)) ;jOl2 m+)- (1ob)
q, (mn+I)kX1 Column V~ector

c=0.12. (n-k-l)-

-

Consequently generic parity-check position -wN(sn-tk~r) is obtained by the weight-
in- action of column q,. Each parity value may be viewed as the output of an
FIR fitter, dlescribed notationally using the 7Z transform of colunmn q.

" V

FIR FILTER EFFECT, COLUMN c.

Q" (Z) --0q1 c=0,1,2, ,(nr-k-1). (11)
S= , , -

When a convolutional code is used to encode the output of an hR filter such
as the one described by matrix F, equation (5), the combined effect in terms of

V matrices becomes:

The properly filtered data still appear in the information positions while the par-
typositions represent the additional filter weighting introduced by the respective

columns of Q, equations (10). The parity sample is produced for every k input

data samples corresponding to a decimiated filter at rate 1 61. Each output of a
k

parity channel represents the combined effects of the original filter coupled with
the respective FIR filter defined by the Q c(Z) transfer function; c=,1,2.

(n-k-). This system dichotomn y is shown in Figure 1 where IR filter matrix F is
Shdenoted by its equivalent transfer function H(Z) and the decimation action is per-

formed by the decimators, k. Fault-tolerance is 'introduced by using a detection
syster , as depicted in Figure 2 where the parity channel output values are corin-
pared aga' .,;t associated quantities calculated by similar parity weighting channels

2,, operating n the output of filter op(Z). Any discrepancies, within the round-off
-olerane of the systen and the error-det ccti rig power of the code. indli mates a iro-

.t I ri TI Nn 1ih oN -ou w here in the Ay dste. including even the sIbSsruns

- 7

% "0 % , .

!-

generating or regeixrating the party vales.

,%' Of course, this systeni configuration is grossly inefficient since it replicates
(n-k) actions of the original filter, one in each parity channel. Even the decimated

sampling at reduced rate _1 does not mitigate the increased complexity. Howeverk

other steps can drastically reduce this complexity bringing the implementation in

'- ",- the re: ln of' practical applicabilityv.

SI.MPLIFICATION IN THE PARITY CHANNELS

One straightforward complexity reduction method follows directly from the

nature of the 0 and 1 entries in the FIR channel filter weights. A typical parity

., channel is the cascade of the original filter, described by its transfer function H(Z),
with the code's FIR filter denoted generically by Q,(Z). (See Figure 2 and equa-
tion (11)). On the other h:iid, the original transfer function is the ratio of tw o

polynomials N(Z) and D(Z).

11(Z) N (Z)
D (Z)

"(Z) ao-1-e l+Z-0- a,Z-2+ +a ,Z" (13a)

D(Z) = 1 +b 1 Z- +b2 Z-+. .+b,,Z (13b)

The numerator function N(Z) in each paity channel may be commuted with
the FIR weighting Q,(Z) . Since only every k th output sample from the parity

channel is required, the multiplications indicated by the numerator function N(Z)
are performed only after k samples have been shifted into its implementation.
Figure 3 displays a typical interchange for one realization form. However, 01e

disadvantage is the additional memory necessary for the feedback portion of the

altered cascade, due to the generally increased length of the parity channel weight-

6 ing. Normally the code's constraint length, (m+l)k, is larger than the number of

filter poles, the degree " of D(Z). Even though this additional storage is not a
dominating factor in modern design, there are still (n-k) separate filters, each with

feedback require(.

The structure of a convolutional code permits several degrees of freedom for

further simplifying the implementation complexity in the (n-k) parity channels.
%' The error corIt rol capability of a convolutional code, even in the case of real arith-

mt; ic codes . epends primarily on the location of the NONZERO entries in tli

p aritv paris of the generator matrix iChapter 10, 3. This translates into a con-

O ra imt tliat tOw error-protecting dist an ce of a real convolutional code reniains the

": a- a ts t li zero torilis in ie parity weig ting transfer fr'ictions.

It11 --S

0% % %
%"

".-'-.'-& .'XA &-A," L" le.• -t* "" : ,"" """''-,.." ' 't: "" '" ' , . "" " . .. Vt. . .,, ,' '

ENCODED FILTER

w= UFG

Parity

1H(Z) QTk 1)(Z) Ik 7' ((s-+ 1) 7 - 1)

0, 1, 2.

Output

Decimnate d

4k SamplIng
At Rate k

BASIC CONVOLUTIONALLY ENCODED FILTER SYSTEM

Figure I

...

TOTALLY
..... SELF -CORRECTING

EQUALITY
CHECKER

I #lCOMPARATOR?

* 4k 4-----------1k

Input HZ 'ie

Decimate d

4k Sampling
At Rate k

EXTERNALLY PROTECTED FILTER SYSTEM

Figure2

S..

Parity Cannel

InputtU

Qc (z)(sn -+c)
Input s -0,1,2,

c =:0,1,2, . ,(n -k -1).

H(Z)= N(Z)

D(Z)

* (a.) ORIGINAL CASCADE IN PARITY CLANNEL

Parity Channel
Output"- Oc (z) U7Z) . (sn+e)

Input D(Z).. np ts =0,1,2, . .' .,.- e =0, 1,2,. ,(-k-1)

(b.) INTERCIANGED NUM,\ERATOR FUNCTIONS

S
Qc (Z) HIAS ONLY ZERO OR UNITY COEFFICIENTS

SIMPLIFICATION BY INTERCHANGING

NUMERATOR FUNCTIONS

Figure 3

.A

-V., ,- . . .,_ Q . . ,.:.,- _.,-, .. ,.,,,, ., , , v .. , , % ,.. ,0 .(€,

QO(Z). Q(Z).... I Q,.k.(Z), are preserved while permitting the nonzero
vaiues to change, within acceptable levels considering the effects of roundofl accu-

racies. Nevertheless, all signs of nonzero entries in any row of Q must be the

same in its modified form. The impact and virtue of altering the parity weighting

filters is developed considering a generic parity channel transfer function Q, (Z).

Q, Q(Z) q, qOfU1)+ qc (Af 2)Z-l-b.. +qc (°)Z - (Af- (14)

M =(m+l)k

-.,Th parity channel can be simplified greatly if an equivalent convolutional

code can be constructed so as to eliminate the poles in the original filter. Label

the new equivalent parity weighting transfer function by Q,'(Z), and then the

desired goals are to select another polynomial R, (Z) such that

D D(Z) R (Z) = (Z), (15a)

A ND

SET OF ZERO JSET OF ZERO

COEFFICIENTS = COEFFICIENTS. (15b)

IN Q,(Z) IN Q,'(Z)

Leaving aside for the moment questions concerning the existence and relative sizes
of the nonzero coefficients in this new Q,' (Z), the impact of such a change, at

-"leat theoretically is to remove the feedback portion in each parity channel.

,.(Z)Q,' (Z)=R,(Z)N(Z)-S,(Z) (16)

The parity channel only needs to implement the FIR filter described by the

* transfer function S,(Z). In addition, the decimation operation, I k, commutes

with such filter structures j6. Figure 4 shows the theoretical impact of this

simplification for typical channel c ; c-0,1 , n-k-1.

DESIGN CONSIDERATIONS

The code modification process has the potential for great simplification in the
%. practical realization of protected digital filters. The general situation can be

further constrained to permit only real polynomials in the modified code design,

(quations (15). A typical equation may be translated into matrix equations with

real coeicierit .9

% -. N"
-- - -- -

COMPARA TOR

lQc (Z)I

Inpnut
Filter
Output

* CODE MODIFICATION
* SIMPLIFICATION FOR PARITY CHANNEL

Figure 4

A (17a)

1 10 0 00
b 1 0

b. b~ I j I I
b3 b2

- 0 0

- - b1 1 × (17b)

b, b,,- 1 b2 b1

'0 0 b Ib
0

I I I b
0 0 0 0 b,

,. .ro q11

"." "
r ,-: q 11

cod p .

":I I
-a..

.',.The A!X(M-b) matrix A represents the polynomial D(Z) which when multiplied

by R(Z), corresponding to the (M-6- - rowed column vector L , yields a modified
', code polynomial Q' (Z), denoted by i2_.

"" The row by column products which produce zeros common to both q and q-L

are important since they guarantee preserved distance structure in the real convo-
Ititional code. Let E be the set of indices labeling the common zero coefficient
locations in Q and QL. Assume that there are items in this set. A homogeneous

-'*, system can be constructed using only the rows of A with indices in 3 . The

selected rows will be collected into matrix A

B - 10
0,A

1g

This homogeneous system has nontrivial solutions depending on the relationship c

- (M - F). Furthermore, if' ?, is the rank of' A (with p _ {), there are exactly
(M - -) linearly independent solutions. These spanning solutions may be found
by several standard methods. One approach changes A into an upper echelon

,matrix. A co. a matrix which has zeros in the lower left triangular part.

Aech L 0 (19a)

ech Aq I Aq Upper Triangular

B , pX(M--c-p) Remaining Columns

The echelon matrix may be reconfigured in turn since there are (M- b - p)
linearly independent solutions, thus dividing a solution vector L into dependent

and independent parts labeled as follows:

Dependent Part

rp,

L - - - - - - - - - - - -(20)
So

S,

Independent Part rd

I

Equation (l9a) may be rewritten in equivalent form using this format.

Asq B = (21)

This is easily solved by finding the inverse of Aq which exists because it is upper
triaiEuaioir due to the partitioning in equation (1u9b).

13 - 11
NN

"" = (21)

=-Asq- r. (22)

Thus for any set of completely nonzero real numbers so, s, S(. -, 1). a
solution r can be easily constructed.

',

-A- B r 1 (23)

VWhen this parameterized solution vector is substituted in the original matrix

equation (17a), the modified weighting function gL can be developed in terms of
the independent variables so, s

A L= qL (24)
0

The mathematical manipulation package MACSYMA 1101 is ideally suited for
obtaining the above solution preserving the parameterization. The variables may

be altered by heuristic rules to choose desirable convolutional code forms. One

useful guideline is to keel) the relative magnitudes of the nonzero coefficients in
similar. These techniques will be exemplified in the following filter design exam-
pie.

A simple example, typical of most digital filter designs [pg. 223, 9], has four

poles and zeros with transfer function H,2 (Z).

If,, (Z) = (25)

0.001836(1 + z-1) 4

(1 - 1.49237 Z - ' + 0.85011 Z - 2) (1 -1.56200 Z - ' +0.64780 Z -2)
0

,4 Its poles lie within the unit circle and are listed as:

(0.78101 ±J'.19457g. Poles =
P =0.74618 ± j0.54159

In the interests of simplicity, the filter will be protected by a six error-correcting
majority logic decodable convolutional code IChapter 13 , 4]. Its parameters arc
k-- 1. n-- 2 and r=- 17. The single parity channel weighting filter has nonzero

B -12

; 4 - _

= *-~4-V ~ -

r coefficients in positions 0, 2, 7, 13, 16 and 17, completely specifying its transfer
tunction.

Ql(Z) =1 + Z - 2 + Z - 7 + Z - 13 + Z - 6 + z -1 7 (26)

* ".'-'- For this example, N1-18, ? 4, and the number of zero terms in
' 1 (Z), "=12. The solution process yields a rank p = 12, leaving two indepen-

dent variables s o , and s, to be assigned. An interactive choice of these parame-

ters allows both to be taken as one and the resulting modified parity channel
weighting transfer function is Q (Z).

Q 1' (Z) = - 2.20292 - 8.44565 Z - 2 - 3.00276 Z -7 + 1.01097 Z-1 3 (27)
. - 1.74398 Z -

1
6 +0.55074 Z - 17

'The corresponding divisor polynomial R I(Z), from equation (I5a), becomes:

R I (Z) = - 2.20292 - 6.72862 Z - - 20.56236 Z - 2 -42.09636 Z - 3 (28)

- 6-1.07129 Z 4 -77.98817 Z- 5 -78.14788 Z - ' - 66.91630 Z - 7

- 48.82915 Z- - 29.29234 Z -13.01494 Z - 2.78602 Z 1 1

+ z- 12 +Z- 13

On the other hand the parity channel weighting polynomial for the modified code,

5, 1(Z) is determined as:

5 S1 (Z) = 0.001836 -- 2.20292 - 15.54032 Z' - 60.69438 Z - 2 (29)

173.52920Z - 384.94830 Z -4 - 675.82958 Z -

-963.47613 Z - 6 - 1145.81838 Z 7
- 1161.40560 Z -

- 1016.68640 Z - - 768.97223 Z - 0 - 492.83269 Z - 1

- 254.23223Z - 1" - 93.06822Z - 3 - 14.15902 Z 1 4

- 7.21398 Z - ' + 5 Z - 6 + Z - 17

The code modification introduces coefficient quantization errors in practical
C. implementations 7-9, particularly with regards to the simplified parity channel's

error comparator subsystem, typified in Figure 4. Each comparator channel indi-
cates error detection when the difference between the parity channel's output from
decirnated FIR filter, described by S,(Z), and that recomputed through transfer
functioli Q,'(Z) exceeds a threshold. The coefficient quantization errors

~B - 13.01

appearing at each comparator channel are modeled through modified transfer
functions representing the two paths from the COlmlIoln input.

QC. Q ,"(Z) 0= Qc(Z)+-- , (Z) ;Deg cl(Z)=M-1)

Si'"(Z) = S;' (Z)+/i,(Z) • Deo Ii(Z)=(A+i'-'-1) (30)

The transfer function Q,' '(Z) represents the practical realization where the

quantization error effects. t (Z), are small; Sc ''(Z) corresponds similarly to the

real implementation of S,(Z) where small errors represented by Tic (Z) are added

-> to each coefficient

The difference at one comparator's output is governed by an overall transfer

function, .A (Z). from the common input. The channel labeling subscript c is

dropped for notational simplicity at this point, and the effect of the decimated

sampling is denoted by k.

*AZ) VH(Z)tIZ) - (Z) l1 k (1

- There is an input component at the error detector's comparator output. The rela-

- tive magnitude of the input component is important since the error detection

.iechanism relies on setting a threshold. After straightforward manipulation and

-simplification, one detector's output samples, d(s), at decimated sample times (tk),
t 0. 1. may be given.

d(tk) = (tku-s)- ,' ,ru(tk-r) (32)

t=0,1,2

$

7 The first summation represents the cascaded filter H(Z) E (Z) , with impulse

response values h,' , while the second summation corresponds with the filter r/(Z).

Since both 6(Z) and t/(Z) have relatively small coefficients, the comparator's out-
put samples are differences of small values.

. A statistical analysis approach which leads to a better understanding of the

necessary detector thresholds assumes that the input samples represent an

uncorrelated input with zero mean and variance c. Thus the input samples u(i)

obey the following statistical properties where E., } is the expectation operator.

B - 14

O-

b . 9

E u(i)u(j)}= (33)

0 ioJ

The aitocorrelation function of one comparator's output, c'dd(Tk) is easily for-

inulated using standard techniques 7,8]. The result is nonzero only for zero

values of the oflset 7.

%'d(tk)=E.d(tk) d((t+T)k)} ; T=0,1,2 (34a)

,4 h-)2 + \- h 2 r=
-2A - h ?lj 7=0

,1-h'L)= [s=0 i=0 J-
0 ;5" /0 (34b)

An upper bound on the variance of the comparator's output samples contains

the impulse response coefficients of both branches from the input to the compara-
tor, Figure 4.

.' : d(o) <)2 2

There are well-known techniques for numerically calculating the summed square
values of the modified impulse response {h,' }. It was first developed by Dugre,

Beex and Scharf i111 and is completely detailed, including a computer program in

* Chapter 5 7..

A COMPETING METHOD

Another method proposed in the literature 121 applies specifically to a state-
variable based realization of a digital filter. The next state and output mappings

are encoded with a suitable real block code at each computational step. This pro-

tection technique will be contrasted with the convolutional code approach just

developed. The internal effect of the block code must be reflected to the output in

order to see the implications of the coded state-variable method.

~B- 13

"-",-"
.d.2

A digital filter implemented in state-variable form may be described through

the linear mappings of the next state and the output equations. The state size

will be denoted by (.

.EX T S TA TE

"Qu, T z(j-+l) = A z(j) + B u(j) (3 6a)

j=0,1,2

OUTPUT7' v(j) = 041) + d u(j) (3b)

EQUA TION

The labeling and respective sizes of the vectors and matrices are summarized

below.

INPUT SAMPLE u (J)
OUTPUT SAMPLE v(j)

STATE VECTOR z(J) (,(Xl)
STA TE MATRIX A (X')

INPUT MATRIX B (6XI)

OUTPUT MATRIX C (1*X

INPUT WEIGHTING L (1XI)

The complete system description may be combined into one matrix equation

involving partitioned vectors and a matrix. An aggregate vector constructed from

the next state vector z(j-+l) and the present output v(j) is a linear function of

another partitioned vector containing the present state :(j) and present input
u(j).

.(j+ l) A B I (j. . ,:=(3 7)
v(j) C d u(j

The filter's internal operation is protected by encoding the (41) components

in the aggregate vector. The code is defined through a parity-check matrix H

establishing t parity values to be appended as additional rows on the left side of

, equation (37). The systematic form of the parity-check matrix displays t nonzero

real row vectors, generically labeled p, each with (S +1) elements while the nega-
tive of the identity matrix, It appears on the right part of the partitioned matrix

op B _ 16

-

.P

P.°PA, R IT*PARITY- -

CHECK I =.- It (38)
A"A TRI I

The partitioned vector on the left side of equation (37) is encoded by appending t
parity positions contained in a parity-check vector r(j);

r1(j)

r(j) = - (39a)
0

where each component comes from a vector inner product with parity-check rows
from tl.

r,(j) = p; i=1,2,... ,t. (39b),-. v (j)

The theory in Corollary 1 127 demonstrates that equivalently each column of
the partitioned matrix on the right of equation (37) may be encoded producing t
parity defined position at the bottom of each column. The system equation for
the internally encoded digital filter contains a t X(4±+)) matrix, S, representing
the respective column encodings just outlined.

z(j-t-) A I B

V(j) c I d (40)

te.."A system configuration incorporating an error-detection comparator subsys-

ter is shown in Figure 5. The elements in r j) are the recomputed parity sam-
pies which should correspond with similarly indexed elements generated as part of
expanded matrix equation (40). It is instructive to examine the outputs related to
T patriy samiiples in either r(') or rk(j). Without lose of generality, assume that

11,- 17
O01

,,,., STORAGE [

Next
Present State RECOMPUTE

'',State PARITY

CODED, v(j
STA TE - 1A R1.BLE Output
IMPLEMENTA TION Output

4 Parity

v-.._ _ _ _ _ _ _ _ I , (r ' (I):] np ut.-- C d r

S --- Parity
COMPA!?A4 TOP,

BLOCK CODED, STATE-VARIABLE
APPROACH TO PROTECTED FILTER

Figure 5

,I.

.1S.

the beginning initial state of the filter is zero. The Z transforms of quantities

related to the parity samples associated with lower part of equation (40) may be

writtell ulsing uppe)tr case let trs to signify Z transforms of corresponding sample

sequences in (40).

22(Z)
L(Z) = S (.1)

(' I(Z)

"lowever, the next-state items are expressible through the usual system transfer

matrix which includes the poles and zero of the original filter.

X(.) : (Z] - A)' B U(Z) (.12)

The desired rel~tionshiip governing the overall system response for the parity

samples follows by combining equations (41) and (42).

(ZI -A)-1 B
. (Z) = s U(Z) (4:3)

The right side defines t separate parity filters, one for each component Tj(Z) of

R (Z).

Tk(Z)
T,(Z)

" (Z) = U(Z) = S(ZI--)-I B U(Z) (44)

Tj (Z)

'.The parallel filter viewpoint of this parity protection scheme is shown in Figure 6.

Several aspects of this protection technique are noteworthy. Parity samples

are calculated at each sample instant permitting no efficient decimation. The

_ filter poles are present in each parity calculation channel. Furthermore the error

performance of the code rests on the Van der Monde nature of the parity-check

matrix 12. prodicing codes with construction and distance properties analogous

to BCIl cod(e, 3,.i . In general there are no extra parameters to adjust for cancel-

ing poles in tOw l parity channels" system transfer functions. The convolutional
co(ippears: m~ore, flexible ine! 0.t1c(ient..oe

:"l T 2(Z)

. (Z) (Z)
Z TRANSFORM

Input OF PARITY
SA APLES

EQUIVALENT PARITY SAMPLE CALCULATIONS
IN STATE ENCODED FILTER SYSTEM

F
Z' Figure 6

a%,

.pha
-

,'-

.

.1,

0.

REFERENCES

.lohn Wakerly, Error Detecting Codes, Self-Checking Circuits and Applica-
tioiis. New York: North-Holland. 1978.

.2 D. K. Pradhan. Editor. Fault-Tolerant Computing Theory and Techniques,
'olume I. Englewood Cliffs: Prentice-Hall, 1986.

3 S. Liin and D. J. Costello, Jr., Error Control Coding Fundamentals and Applica-
tions. Englewood Cliffs: Prentice-Hall, 1983.

I l?. E. Blahut. Theory and Practice of Error Control Codes . Reading, Mas-
achusetts: Addison-Wesley. 1983.

T 1'. G. Marshall, Jr.. " Coding of Real-Number Sequences for Error Correction:
A Digital Signal Processing Problem ", IEEE Journal on Selected Areas In
('onmunzcations , vol. SAC-2, pp. 381-392, 1984.

6 R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing
Englewood Cliffs: Prentice-Hall, 1983.

7 N. 1K. Bose, Digital Filters Theory and Applications . New York: North-
- tlolland, 1985.

S. A. Tretter. Introduction to Discrete-Time Signal Processing. New York:
Wilev, 1976.

*9 A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood
Cliffs: Prentice-Hall, 1975.

10 The NMathlab Group, MACSYMA Reference Manual ", MIT Laboratory for
* ,Computer Science, Version Ten, 1983.

11 J. P. Dugre, A. A. L. Beex, and L. L. Scharf, " Generating Covariance
Sequ(nces and the Calculation of Quantization and Roundoff Error Variances
in Digital Filters ", IEEE Transactions on Acoustics, Speech and Signal Pro-
C(,.l c . vol. AS.lP-2A, pp. 102-104, 1980.

'V.,

01--19

e NC
ip N.- • . ,, .. ,. , , . .. ,

" '?. 12' J. Y. Jou and ,J. A. Abraham, " Fault-Tolerant Matrix Arithmetic and Signal

Processing onl Highly Concurrent Computing Structures "
. Proceedin gs of IEEK. vol. 74, pp. 732-741, 1984.

S." 131 1. N. llerstcin. I opncs hn AlIgebra . New York: Blaisdell, 1964.

I.'

..

?..

<S.,

-S,"

:-.4.

"'4

A,.,

